
! COMMUNICATION
PROTOCOL

The communication order

Get Type 0 record
First of all you should open the COM port the device is connected to. I use for this propose
USB.DLL that can be found in the NMU installation directory. This DLL is .NET assembly and
can be easy added to your own program. To communicate by IRDA port use IrDAComms.DLL
which you can found in the same directory. These DLLs contains _open function to open port.

After COM port is opened make pause for about 10 seconds. Than send the first command.

All commands have identical formats. The first byte contains the length of the command
packet. The length does not include this first byte and the last byte which contains the
checksum of the packet. Checksum is calculated as sum of packet bytes values by module of
256. This sum does not include the first length byte and the last checksum byte.

!
The first command packet is very simple and contains only one byte. This command is send as
ASCII text string “01 80 80” and is recognized by most of all Altimaster devices. I recommend
you to send it without spaces, but it is recognized with spaces too.

!
 In response for this command Altimaster devices send Type 0 record. See below the
description of this record. It seems that this type of communication using ASCII strings
representing HEX digits was used in devices with firmware prior to 2.6.3. But now all other
command are represented in bytes and encrypted.

On the base of Type 0 record bytes is generated encryption key which is used to encrypt and
decrypt all packages sent to and received from N2, N3 and N3A devices. All packages are even
to 32 bytes length and if necessary are added by zeros. For example read command package
contains 7 bytes plus length and checksum bytes - total 9 bytes. These 9 bytes are added with
zero bytes to 32 than encrypted and send to device.

I’ve not discover write commands in case to do not damage my N3. So I know only two more
commands: to read memory and to end communication command.

BYTE 0 BYTES 1..N BYTE N+1

Packet
length

Command packet Checksum of BYTES 1..N by
module 256

BYTES 0 1 2 3 4 5

ASCII 0 1 8 0 8 0

HEX 30 31 38 30 38 30

Read memory command
Read memory command consist of one byte code decimal 160 (A0 hexadecimal), 4 bytes of
memory address and 2 bytes of the requested memory block length.

Memory address is DWORD and memory block length is WORD stored in Little-Endian format.

In response to this command device send two acknowledgements 49 decimal (31
hexadecimal) and 53 decimal (35 hexadecimal). Than device send requested memory block
divided in packages of 32 bytes length. When you successfully receive each 32-byte package
you should send acknowledgement 49 decimal (31 hexadecimal) to device. All packages are
encrypted and you need to decrypt them before use the data. The first received packet in
first 4 bytes contains the memory address you requested, so you receive requested memory
block plus 4 more bytes.

Addresses and lengths of data structures I’ve discovered you can see in table below.

But you can read any address and length you need. Program contains tool for it. For example
Paralog reads only bytes with “Total Physical Jumps” data before reading logbook instead
reading all logbook summary information.

End communication
On ending communication send command 175 without parameters, flash device and that send
command 03 without parameters in form of ASCII string.

Other commands and acknowledgements

BYT
E

0 1 2 3 4 5 6 7 8

packe
t
length

comman
d code

Memory
address
low
byte

Memory
address
middle
byte

Memory
address
high
byte

Memory
address
highest
byte

Memory
block
length
low byte

Memory
block
length
low byte

Check
sum

DEC 7 160

HEX 7 A0

command description

DEC HEX BIN

03 03 00000011 The last command for ending communication. It is sent in the
form of ASCII string representing HEX digits in the same manner as
the first (get “Type 0” record) command. This command is sent
after command 175

48 30 00110000 Acknowledgement that communication is ABORTED

49 31 00110001 Acknowledgement that command recognized successfully

50 32 00110010 Acknowledgement that the length of the send packet is incorrect

51 33 00110011 Acknowledgement that the checksum of the send packet is
incorrect

52 34 00110100 Acknowledgement to repeat packet (command)

Encryption algorithm

How to generate encryption key
Encryption key consists of 4 DWORDs. These DWORDs are formed from “Type 0” record bytes
and explicit values.

53 35 00110101 Acknowledgement that device/host is ready to send/receive
packets

54 36 00110110 Acknowledgement that received command is not recognized

 55 37 00110111 Acknowledgement that received command has incorrect syntax

56 38 00111000 Acknowledgement that there is error writing to EEProm/Fram

57 39 00111001 Acknowledgement that there is Flash Erase error

58 3A 00111010 Acknowledgement that the requested memory address is out of
bounds

59 3B 00111011 Acknowledgement that there is Flash write error

60 3C 00111100 Acknowledgement that there is no Boot loader present to respond
to request

128 80 10000000 Command to get “Type 0” record. It is sent in the form of ASCII
string representing HEX digits.

160 A0 10100000 Command to read memory block

164 A4 10100100 ??? I don’t know but it often seen in NMU protocol log. It seems
that NMU checking N3 is alive with this command

175 AF 10101111 Command to end communication (may be for it. I use it without
any parameters as in NMU)

176 B0 10110000 Command to write memory block

-1 FF 11111111 Acknowledgement that there is communication error

command description

DEC HEX BIN

DWORDs 0 1 2 3

DWORD
BYTES

3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

BYTE #
or

VALUE

B
Y
T
E

B
Y
T
E

B
Y
T
E

V
A
L
U
E

B
Y
T
E

B
Y
T
E

B
Y
T
E

B
Y
T
E

B
Y
T
E

V
A
L
U
E

B
Y
T
E

B
Y
T
E

B
Y
T
E

B
Y
T
E

V
A
L
U
E

B
Y
T
E

Type 0
records
byte or
explicit
values
(decimal
)

 24 26 8 78 6 25 23 13 10 117 7 22 9 11 126 21

!
How to encrypt packet
If packet length is less than 32 bytes expand it to this size by adding zeros. If packet length is
more than 32 bytes divide it to 32-bytes packets and if the length is not even to 32 expand
last packet to 32 bytes by adding zeros. Convert each 32-packet to DWORD array. Remember
that bytes are stored in Little-Endian format. Take pair of DWORD and encrypt it with code
placed bellow. Than next pair, etc. Convert DWORD array to 32-byte packet where bytes are
stored in Little-Endian format. Packet is encrypted.

 UInt32 U;"// first DWORD from the pair"
 UInt32 U1;" // second DWORD from the pair"
 UInt32 U2 = 0;"
 for (int i = 16; i > 0; i--)"
 {"
 U += (((U1 << 4) ^ (U1 >> 5)) + U1) ^ (U2 + KEY[U2 & 3]);"
 U2 += 0x9E3779B9;"
 U1 += (((U << 4) ^ (U >> 5)) + U) ^ (U2 + KEY[(U2 >> 11) & 3]);"
 }"!
Encrypted pair is in U and U1 DWORDs, KEY is array of four DWORDs with encryption key
generated in order I’ve explained above.

How to decrypt packet
Decryption is made in the same way as encryption, but the code is different.

 UInt32 U; // first DWORD of the pair"
 UInt32 U1; // second DWORD of the pair"
 UInt32 U2 = 0xE3779B90;"
 for (int i = 16; i > 0; i--)"
 {"
 U1 -= (((U << 4) ^ (U >> 5)) + U) ^ (U2 + KEY[(U2 >> 11) & 3]);"
 U2 -= 0x9E3779B9;"
 U -= (((U1 << 4) ^ (U1 >> 5)) + U1) ^ (U2 + KEY[U2 & 3]);"
 }"!
Decrypted pair is in U and U1 DWORDs, KEY is array of four DWORDs with encryption key
generated in order I’ve explained above.

 Data structures

Data structures addresses in device memory

In memory
Structure name

offset length

DEC HEX DEC HEX

Jumps summary 10 0x000A 30 0x001E

Device Settings 44 0x002C 13 0x000D

Speed Groups 58 0x003A 26 0x001A

DZ Names 84 0x0054 322 0x0142

AC Names 406 0x0196 322 0x0143

Alarm Names 728 0x02D8 322 0x0144

!
Type 0 record
The length of record may vary depending on Neptune device product and firm ware
(software) version.

!
Device settings record
In my program it is named Display settings in the same way as in N3 device.

Alarm Tone Directory 1050 0x041A 18 0x0012

Alarm Tone Data 1068 0x042C 160 0x00A0

Alarm Settings 1228 0x04CC 84 0x0054

Jumps 1312 0x0520 7766 0x1E56

BYTE BITS VALUE DESCRIPTON

0 0-7 Packet length

1 0-7 0 Packet type

2 0-7 3 = N3 Communication type

3 4-7 Software major version number

0-3 Software minor version number

4 0-7 Software revision number

5 0-7 ASCII code Serial number index (first letter)

6-13 0-7 ASCII code Serial number digits, some last may be spaces (0x20)

14 0-7 1 = N3/N3A
3,4,5,6,7 = N2

Hardware revision number

15 07 0 = Unknown
1 = Neptune
2 = Wave
3 = Tracker
4 = Data Logger
5 = N3
6 = N3A

Product type

16 0-7 NVRAM configuration

17-20 0-7 ?

21-26 0-7 Used in KEY generation with bytes of Serial number.

27-30 0-7 ?

31 0-7 Checksum Sum bytes from 1 to 30 mod 256. In my case this is the
last byte

BYTE BITS VALUE DESCRIPTON

0 0-7 0 = feet
1 = meters

Altitude measure

!
Log book summary info record
All WORDs and DWORDs are stored in Little Endian format: low byte first, high byte second,
etc.

1 0-7 0 = mph
1 = kmh

Speed measure

2 0-7 0 = Fahrenheit
1 = Celsius

Temperature measure

3 0-7 0 = not flipped
1 = flipped

Display view mode

4 0-7 0 = disabled
1 = enabled

Log book usage

5 0-7 0 = 12 hour
1 = 24 hour

Time format

6 0-7 0 = US
1 =
International

Date format

7 0-7 0 = disabled
1 = enabled

Canopy display mode

8 0-7 0 = show time
1 = show
altitude

Climb display mode

9 0-7 0 in my N3 ?

10 0-7 Display contrast value

11 0-7 0x5B in my N3 ?

12 0-7 0 = normal
1 = loud

Canopy alarms mode

BYTE BITS VALUE DESCRIPTON

BYTE BITS VALUE DESCRIPTON

0-1 0-15 0x04DC in my
N3

?

2-3 0-15 Number of jumps since last odometer reset

4-5 0-15 Total physical jumps stored (include deleted jumps)

6-7 0-15 Total jumps (total physical jumps exclude deleted)

8-11 0-31 Total free fall time in seconds

12-15 0-31 Total time under canopy in seconds

16-17 0-15 Next jump number

18-19 0-15 Top jump number (the most resent jump number)

!
Maximum of Total Physical Jumps depending on HW revision number

!
Drop zone’s names array
For name used 10 bytes, so each block contains two names. Names are stored as ASCII values
using bits 0-6 of each byte. High bit (number 7) of the name’s first byte (number 0) is a flag
which is indicating that the name is hidden. High bit (number 7) of the name’s second byte
(number 1) is a flag which is indicating that the name is used.

20-23 0-31 0x00610161 in
my N3, 0x0161
is total physical
jumps in my N3

?

24-25 0-15 Current drop zone name index

26-27 0-15 Current aircraft name index

28-29 0-15 0 = off
1 = on

Student mode

BYTE BITS VALUE DESCRIPTON

HW revision Max Total Physical
Jumps

1 2900

6 1600

7 2900

Other 149

BYTE BITS VALUE DESCRIPTON

0 0-7 Checksum

1 0-7 Count

2-21 0-159 ASCII or 0x00 Block 0: Drop zone name in ASCII

22-41 0-159 ASCII or 0x00 Block 1: Drop zone name in ASCII

42-61 0-159 ASCII or 0x00 Block 2: Drop zone name in ASCII

62-81 0-159 ASCII or 0x00 Block 3: Drop zone name in ASCII

82-101 0-159 ASCII or 0x00 Block 4: Drop zone name in ASCII

102-12
1

0-159 ASCII or 0x00 Block 5: Drop zone name in ASCII

122-14
1

0-159 ASCII or 0x00 Block 6: Drop zone name in ASCII

142-16
1

0-159 ASCII or 0x00 Block 7: Drop zone name in ASCII

!
Aircraft’s names array
For name used 10 bytes, so each block contains two names. Names are stored as ASCII values
using bits 0-6 of each byte. High bit (number 7) of the name’s first byte (number 0) is a flag
which is indicating that the name is hidden. High bit (number 7) of the name’s second byte
(number 1) is a flag which is indicating that the name is used.

162-18
1

0-159 ASCII or 0x00 Block 8: Drop zone name in ASCII

182-20
1

0-159 ASCII or 0x00 Block 9: Drop zone name in ASCII

202-22
1

0-159 ASCII or 0x00 Block 10: Drop zone name in ASCII

222-24
1

0-159 ASCII or 0x00 Block 11: Drop zone name in ASCII

242-26
1

0-159 ASCII or 0x00 Block 12: Drop zone name in ASCII

262-28
1

0-159 ASCII or 0x00 Block 13: Drop zone name in ASCII

282-30
1

0-159 ASCII or 0x00 Block 14: Drop zone name in ASCII

302-32
1

0-159 ASCII or 0x00 Block 15: Drop zone name in ASCII

BYTE BITS VALUE DESCRIPTON

BYTE BITS VALUE DESCRIPTON

0 0-7 Checksum

1 0-7 Count

2-21 0-159 ASCII or 0x00 Block 0: Aircraft name in ASCII

22-41 0-159 ASCII or 0x00 Block 1: Aircraft name in ASCII

42-61 0-159 ASCII or 0x00 Block 2: Aircraft name in ASCII

62-81 0-159 ASCII or 0x00 Block 3: Aircraft name in ASCII

82-101 0-159 ASCII or 0x00 Block 4: Aircraft name in ASCII

102-12
1

0-159 ASCII or 0x00 Block 5: Aircraft name in ASCII

122-14
1

0-159 ASCII or 0x00 Block 6: Aircraft name in ASCII

142-16
1

0-159 ASCII or 0x00 Block 7: Aircraft name in ASCII

162-18
1

0-159 ASCII or 0x00 Block 8: Aircraft name in ASCII

182-20
1

0-159 ASCII or 0x00 Block 9: Aircraft name in ASCII

!
Alarm’s names array
For name used 10 bytes, so each block contains two names. Names are stored as ASCII values
using bits 0-6 of each byte. High bit (number 7) of the name’s first byte (number 0) is a flag
which is indicating that the name is hidden. High bit (number 7) of the name’s second byte
(number 1) is a flag which is indicating that the name is used.

202-22
1

0-159 ASCII or 0x00 Block 10: Aircraft name in ASCII

222-24
1

0-159 ASCII or 0x00 Block 11: Aircraft name in ASCII

242-26
1

0-159 ASCII or 0x00 Block 12: Aircraft name in ASCII

262-28
1

0-159 ASCII or 0x00 Block 13: Aircraft name in ASCII

282-30
1

0-159 ASCII or 0x00 Block 14: Aircraft name in ASCII

302-32
1

0-159 ASCII or 0x00 Block 15: Aircraft name in ASCII

BYTE BITS VALUE DESCRIPTON

BYTE BITS VALUE DESCRIPTON

0 0-7 Checksum

1 0-7 Count

2-21 0-159 ASCII or 0x00 Block 0: Alarm name in ASCII

22-41 0-159 ASCII or 0x00 Block 1: Alarm name in ASCII

42-61 0-159 ASCII or 0x00 Block 2: Alarm name in ASCII

62-81 0-159 ASCII or 0x00 Block 3: Alarm name in ASCII

82-101 0-159 ASCII or 0x00 Block 4: Alarm name in ASCII

102-12
1

0-159 ASCII or 0x00 Block 5: Alarm name in ASCII

122-14
1

0-159 ASCII or 0x00 Block 6: Alarm name in ASCII

142-16
1

0-159 ASCII or 0x00 Block 7: Alarm name in ASCII

162-18
1

0-159 ASCII or 0x00 Block 8: Alarm name in ASCII

182-20
1

0-159 ASCII or 0x00 Block 9: Alarm name in ASCII

202-22
1

0-159 ASCII or 0x00 Block 10: Alarm name in ASCII

222-24
1

0-159 ASCII or 0x00 Block 11: Alarm name in ASCII

!
Alarm settings record
Consist of eight 10-byte arrays presiding by four bytes. First two bytes are unknown for me.
Second two bytes contain array index of active free fall and canopy alarms respectively. If the
high bit (7) of these bytes is set means than free fall (or canopy) alarms are disabled.

242-26
1

0-159 ASCII or 0x00 Block 12: Alarm name in ASCII

262-28
1

0-159 ASCII or 0x00 Block 13: Alarm name in ASCII

282-30
1

0-159 ASCII or 0x00 Block 14: Alarm name in ASCII

302-32
1

0-159 ASCII or 0x00 Block 15: Alarm name in ASCII

BYTE BITS VALUE DESCRIPTON

BYTE BITS VALUE DESCRIPTON

0 0-7 ?

1 0-7 ?

2 0-7 If BIT 7 is
set all free
fall alarms
are disabled

Active alarm array number for free fall.

3 0-7 If BIT 7 is
set all
canopy
alarms are
disabled

Active alarm array number for canopy.

!
4-13 !
10 !
B
Y
T
E !
A
R
R
A
Y

0 2-7 Alarm name index

0-1 0 = free fall
1 = canopy

Free fall/canopy indicator

1 0-7 Alarm tone index for Alarm 1

2 0-7 Alarm tone index for Alarm 2

3 0-7 Alarm tone index for Alarm 3

4-5 0-15 Alarm altitude 1.
Resulted altitude calculated
in meters
for free fall: (round (100 * (value/2)))/100
for canopy: (round (10 * (value/2)))/10
in feet
for free fall:
round(((((value / 2) * 1000) / 25.4) / 12) / 100)*100
for canopy:
round(((((value / 2) * 1000) / 25.4) / 12) / 10)*10

6-7 0-15 Alarm altitude 2

8-9 0-15 Alarm altitude 3

!
Speed group record
Three speed groups each of four bands. Each group occupies 8-byte record. Each record
consists of four pair of bytes, one for each band. Fist byte of pair contains start value, second
contains stop value.

14-23 Alarm 2: 10 – BYTE ARRAY the same as above

24-33 Alarm 3: 10 – BYTE ARRAY the same as above

34-43 Alarm 4: 10 – BYTE ARRAY the same as above

44-53 Alarm 5: 10 – BYTE ARRAY the same as above

54-63 Alarm 6: 10 – BYTE ARRAY the same as above

64-73 Alarm 7: 10 – BYTE ARRAY the same as above

74-83 Alarm 8: 10 – BYTE ARRAY the same as above

BYTE BITS VALUE DESCRIPTON

BYTE BITS VALUE DESCRIPTON

0 0-7 ?

1 0-7 0 – default
1 – group 1
2 – group 2
3 – group 3

Selected group

2 0-7 Start value band 1 group 1

3 0-7 Stop value band 1 group 1

4 0-7 Start value band 2 group 1

5 0-7 Stop value band 2 group 1

6 0-7 Start value band 3 group 1

7 0-7 Stop value band 3 group 1

8 0-7 Start value band 4 group 1

9 0-7 Stop value band 4 group 1

10 0-7 Start value band 1 group 2

11 0-7 Stop value band 1 group 2

12 0-7 Start value band 2 group 2

13 0-7 Stop value band 2 group 2

14 0-7 Start value band 3 group 2

15 0-7 Stop value band 3 group 2

16 0-7 Start value band 4 group 2

17 0-7 Stop value band 4 group 2

18 0-7 Start value band 1 group 3

!
Jumps details
Jumps are stored in logbook as sequence of 22-bytes records. Deleted jumps are not
physically deleted but are marked as deleted. Each record is representing one stored jump.
Information in the record is sequences of bits which are described in table below. It is
surprise but I can’t found in this record “Average speed” which my N3 shows.

19 0-7 Stop value band 1 group 3

20 0-7 Start value band 2 group 3

21 0-7 Stop value band 2 group 3

22 0-7 Start value band 3 group 3

23 0-7 Stop value band 3 group 3

24 0-7 Start value band 4 group 3

25 0-7 Stop value band 4 group 3

BYTE BITS VALUE DESCRIPTON

WORD BYTE BIT SIZE in
BITS

VALUE DESCRIPTION

0 0 0 16 jump number

1

2

3

4

5

6

7

1 8

9

10

11

12

13

14

15

1 2 16 7 month quantity Quantity of months
from 2007 year. To

calculate the year of
jump divide this value
minus 1 on 12 and add

17

18

19
minus 1 on 12 and add
2007. To calculate the
month of jump take
the module (%) of 12

on this value
20

21

22

23 1 deleted 0 – not deleted
1 - deleted

3 24 8 Free fall alarm name
index

If high bit is set to 1
this means that free

fall alarms are
deactivated

25

26

27

28

29

30

31

2 4 32 10 Free fall time in seconds

33

34

35

36

37

38

39

5 40

41

42 6 software minor version
number

43

44

45

46

47

3 6 48 6 Minutes of the day of the
jump

49

50

WORD BYTE BIT SIZE in
BITS

VALUE DESCRIPTION

51

52

53

54 5 Hour of the day of the
jump

55

7 56

57

58

59 4 software major version
number

60

61

62

63 1 Hi bit of aircraft name
index

4 8 64 7 speed on 3Kft altitude Stored in meters per
second. To calculate
in KMH multiply on
3.6. To calculate in
MPH multiply on
2.236936

65

66

67

68

69

70

71 7 speed on 6Kft altitude Stored in meters per
second. To calculate
in KMH multiply on
3.6. To calculate in
MPH multiply on
2.236936

9 72

73

74

75

76

77

78 7 speed on 9K feet altitude Stored in meters per
second. To calculate
in KMH multiply on
3.6. To calculate in
MPH multiply on
2.236936

79

5 10 80

81

82

WORD BYTE BIT SIZE in
BITS

VALUE DESCRIPTION

83

84

85 7 speed on 12K feet
altitude

Stored in meters per
second. To calculate
in KMH multiply on
3.6. To calculate in
MPH multiply on
2.236936

86

87

11 88

89

90

91

92 4 Lo bits of aircraft name
index

93

94

95

6 12 96 10 Exit altitude Stored as number of
2hPa. To calculate in
meters multiply on
16.
To calculate in feet
multiply on 52.4934

97

98

99

100

101

102

103

13 104

105

106 5 Day of the jump

107

108

109

110

111 1 Lo bit of Speed Group
number

Zero speed group
number means Default
speed group

7 14 112 10 Deploy altitude

113

114

WORD BYTE BIT SIZE in
BITS

VALUE DESCRIPTION

115

116

117

118

119

15 120

121

122 4 Drop zone name index

123

124

125

126 1 not used

127 1 Hi bit of Speed Group
number

Zero speed group
number means Default
speed group

8 16 128 12 canopy time in seconds

129

130

131

132

133

134

135

17 136

137

138

139

140 2 Hi bits of canopy alarm
name index

If set to 1 it means
that canopy alarms

are deactivated
141

142 2 Hi bits of LT index I don’t know the
propose of LT

parameter so I don’t
use it in my program

143

9 18 144 10 Drop zone altitude I don’t show this
parameter in my

program145

WORD BYTE BIT SIZE in
BITS

VALUE DESCRIPTION

146

147

148

149

150

151

19 152

153

154 6 Lo bits of LT index I don’t know the
propose of LT

parameter so I don’t
use it in my program

155

156

157

158

159

10 20 160 4 software revision number

161

162

163

164 4 Lo bits of canopy alarm
name index

165

166

167

21 168 8 Max speed Always 0 in my N3 so I
don’t use it in my

program169

170

171

172

173

174

175

WORD BYTE BIT SIZE in
BITS

VALUE DESCRIPTION

